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Abstract: An analysis of the structural dynamic response under uncertainty is presented. Uncer-
tainties in load and material are modeled as intervals exploiting the interval finite element method
(IFEM). To reduce overestimation and increase the computational efficiency of the solution, we
do not solve the dynamic problem by an explicit step-by-step time integration scheme. Instead,
our approach solves for the structural variables in the whole time domain simultaneously by an
implicit scheme using discrete Fourier transform and its inverse (DFT and IDFT). Non-trivial initial
conditions are handled by modifying the right-hand side of the governing equation. To further
reduce overestimation, a new decomposition strategy is applied to the IFEM matrices, and both
primary and derived quantities are solved simultaneously. The final solution is obtained using an
iterative enclosure method, and in our numerical examples the exact solution is enclosed at minimal
computational cost.
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1. Introduction

For any given physical system, uncertainties caused by measurement device or environmental condi-
tions in the data acquisition process causes inconsistencies between the estimated and actual system
behavior (Fernández-Mart́ınez et al., 2013). Thus it is necessary to model and track the propagation
of uncertainties in the system and to reliably evaluate the accuracy of the obtained solution.
Conventional treatment of uncertainties involves the probability theory (Lutes and Sarkani, 2004),
in which random variables are used to model the uncertainties encountered. In cases where enough
measurement data is available and sufficient to reliably predict the nature of the uncertainties,
probability approach is preferred. However, when there is not enough measurement data (Moens
and Hanss, 2011; Zhang, 2005), as an alternative, one can turn to other available non-probabilistic
approaches, such as Bayesian networks (Igusa et al., 2002; Soize, 2013; Unger and Könke, 2011),
fuzzy sets (Adhikari and Khodaparast, 2014; Dehghan et al., 2006; Erdogan and Bakir, 2013; Klir
and Wierman, 1999), evidence theory (Bai et al., 2013; Dempster, 1967; Jiang et al., 2013; Shafer,
1968), and intervals (Corliss et al., 2007; Do et al., 2014; Impollonia and Muscolino, 2011; Muhanna
et al., 2007). Here the interval approach is adopted, in which uncertainties are modeled by interval
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numbers characterized by their respective lower and upper bounds. More discussions on intervals
and interval arithmetic can be found in Alefeld and Herzberger (1984), Kulisch and Miranker (1981),
and Moore et al. (2009).

In this paper, an interval-based approach for the analysis of structural dynamic problems in
the time domain is presented. In particular, the time-domain dynamics of elastic structures with
uncertain geometric and material properties are studied. Uncertain parameter of the structure are
modeled by intervals, and Interval Finite Element Method (IFEM) is implemented (Hu and Qiu,
2010; Qiu and Ni, 2010; To, 2012; Xia et al., 2010). The structure is governed by the following
interval differential equation in the time domain,

Ku + Cu̇ + Mü = f , (1)

where K, C, and M are respectively the stiffness, damping, and mass matrix of the structure,
u is the unknown nodal displacement vector, u̇ and ü are the corresponding nodal velocity and
acceleration vector, f is the time-varying nodal equivalent load. From now on, non-italic bold letters
are used to denote interval variables. The initial conditions are expressed in an interval form,

u(0) = u0, u̇(0) = v0, (2)

where u0 and v0 are the initial nodal displacement and velocity vector, respectively.
In practice, the differential Eq. (1) is solved at discrete time tk, which are usually uniformly

spaced in time. Conventional numerical integration approaches solve Eq. (1) recursively, viz. the
solution at the current time tk is obtained by using the solution in the previous time tk−1. One
notable example of the numerical integration method in structural analysis is the Newmark-β
method (De Borst et al., 2012; Dokainish and Subbaraj, 1989; Paz, 1997). However, such recursive
approach is not directly applicable for IFEM implementation, because overestimation due to interval
dependency accumulates, and the yielded interval enclosure quickly become excessively wide and
practically useless after a few iterations in time.

Alternatively, the transformation approach can be used (Bae et al., 2014; Yang et al., 2012).
In the current method, the Discrete Fourier Transform (DFT) approach is adopted. A brief in-
troduction on the DFT can be found in Santamarina and Fratta (2005). The governing Eq. (1)
is transformed into the frequency domain using DFT, and the computed response is expressed
back into the time domain using the corresponding inverse transform (Inverse Discrete Fourier
Transform, IDFT). As a result, the solution vector at all time steps are obtained simultaneously.

In the following sections, first the deterministic solver based on the DFT approach is presented.
Then the presented interval solver is introduced in detail. The governing Eq. (1) is reintroduced
into a fixed-point form, and an iterative approach is adopted to obtain a sharp interval enclosure of
the exact solution. Finally, the performance of the current method is compared with other available
methods in a few numerical example.
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2. Deterministic Dynamic Solver

In this section, the deterministic dynamic solver based on the DFT approach (Veletsos and Kumar,
1983; Veletsos and Ventura, 1985) is presented. The dynamic response of a linearly elastic structure
is studied, which, after FEM discretization, is governed by

Ku+ Cu̇+Mü = f, (3)

where K, C, and M are the stiffness, damping, and mass matrices of the structure, respectively, u
is the nodal displacement vector, u̇ and ü are the first and second derivatives of u with respect to
the time (or, equivalently, nodal velocity and acceleration), and f is the nodal equivalent load. The
initial condition is given by

u(0) = u0, u̇(0) = v0. (4)

The system is assumed discretized in time. The nodal equivalent load at discrete time tk is given,
and the goal is to solve for the nodal displacement vector u at tk, as well as its derivatives u̇ and
ü. That is, f(tk) = fk, u(tk) = uk, u̇(tk) = u̇k, ü(tk) = ük. Usually, the time steps are uniformly
spaced, viz. tk = k∆t. The sampling interval ∆t must be small enough to prevent any potential
aliasing (Santamarina and Fratta, 2005). Let T be the total time length of the signal and N the
total number, then T = N∆t.

In the discrete Fourier transform approach, DFT is applied to the discrete version of the
governing Eq. (3) and transform it into(

−ω2
jM + iωjC +K

)
Ft(u)j = Ft(f)j , (5)

where i =
√
−1 is the imaginary unit, ωj = j∆ω with ∆ω = 2π/T being the fundamental frequency,

Ft(u)j and Ft(f)j are the Fourier transform of the nodal displacement uk and equivalent load fk,
respectively. Then the nodal displacement vector in the time-domain is obtained by applying the
IDFT to Ft(u)j , viz.

un =
1

N

N−1∑
j=0

Ft(u)je
−i(2π/N)jn =

1

N

N−1∑
j=0

GjFt(f)je
−i(2π/N)jn, (6)

where Gj is the inverse of the effective stiffness matrix in Eq. (5). To ensure that the final solution
un is real, i.e., null imaginary part, Gj takes the following form,

Gj =

{(
−ω2

jM + iωjC +K
)−1

, 0 ≤ j < N/2;

conjugate of GN−j , N/2 ≤ j < N.
(7)

The above approach essentially solves for the stationary response of the structure caused by
periodic loads with period T . The results are identical to the actual dynamic response with trivial
initial conditions (u0 = v0 = 0) when enough zero-padding is attached. The length of the zero-
padding, Tp, can be estimated from

e−ζωTp < τerr, ⇒ Tp >
ln τerr
ζω

, (8)
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where τerr is the error tolerance, ω is the lowest natural frequency of the structure, and ζ is the
corresponding effective damping ratio. Let T0 be the length of the original signal, then T = T0 +Tp.

Non-trivial initial conditions can be modeled by modifying the equivalent load (Lee et al., 2005;
Liu et al., 2015; Mansur et al., 2000). For initial displacement u0, it is equivalent to add a constant
load fu0 = Ku0, which exist for the time interval T0 ≤ t < T . For initial velocity v0, it is equivalent
to add an impulse load fv0 = Mv0/∆t, at time t = 0 for a duration of time ∆t.

3. Interval Dynamic Solver

Assume the elastic structure under study contains uncertain parameters, which are modeled by
intervals. The structural system is governed by Eqs. (1) and (2). For simplicity, the Rayleigh
damping is adopted. The damping matrix

C = αdM + βdK, (9)

where αd and βd are the Rayleigh damping coefficients. To reduce overestimation due to interval
dependency, the interval matrix decomposition outlined before is adopted. Then DFT is used to
transform the governing equation into a fixed-point form, which is further solved by a new variant of
iterative enclosure method. Details on the current method are presented in the following subsections.

3.1. Interval matrix decomposition

The matrix decomposition strategy reduces overestimation due to interval dependency by avoiding
multiple occurrences of the same interval variable in the formulation. The stiffness matrix K, the
mass matrix M, and the stress-displacement matrix S are decomposed into

K = Adiag(Λα)AT , M = Amdiag(Λmαm)ATm, (10)

where A, Λ, Am, and Λm are deterministic matrices, α is the interval stiffness parameter vector
that accounts for uncertainties in the stiffness matrix K, and αm is the interval mass parameter
vector that accounts for uncertainties in the mass matrix M.

By combining the nodal equivalent load vector fk at different time steps tk, the interval load
matrix f is obtained, whose k -th column is fk. When the structure is subject to external loading
and the M -δ method is adopted (Muhanna and Mullen, 2001), f is decomposed into

f = Fδt, (11)

where F is a deterministic matrix, and δt is the time-varying load uncertainty matrix. Usually it
is necessary to distinguish the uncertainty in the magnitude of the load and the uncertainty in
the time-history of the load. Thus δt is further decomposed into an interval column vector δ and
an interval row vector dt, viz. δt = δdt, where δ models the uncertainties in the load magnitude
and dt models the uncertainties in the load time-history. Finally, the nodal equivalent load f is
decomposed into

f = (Fδ)dt. (12)
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Similarly, when the structure is subject to ground motion, f is decomposed into

f = −Ma = −Mqδt, (13)

where δt denotes the time-varying ground acceleration, a represents the resulting nodal acceleration
of the structure, and q relates δt to a, viz. a = qδt. By using the same decomposition for δt, and
noting Eq. (10),

f = −Amdiag(Λmαm)ATmqδdt = Am (Λmαm ◦Bfδ)dt, (14)

where Bf = −ATmq, and a ◦ b is the element-by-element Hadamard product of two vectors a and b.
When the initial conditions are non-trivial and modeled by intervals, as shown in Eq. (2), the

corresponding nodal equivalent load f is given by

f = Ku0du0 + Mv0dv0 , (15)

where du0 and dv0 are two deterministic row vectors. du0 is zero for the time interval 0 ≤ tk < T0

and unity for the time interval T0 ≤ tk < T , where T0 and T are the length of the original and
padded signal. dv0 represents an impulse load which is 1/∆t at tk = 0 and zero everywhere else.
Noting the decomposition in Eq. (10),

f = A
(
Λα ◦ATu0

)
du0 +Am

(
Λmαm ◦ATmv0

)
dv0 , (16)

which has a similar matrix form as Eq. (14). Thus the non-trivial initial conditions are treated in
the same manner as ground accelerations.

3.2. Interval governing equations

To solve the interval differential Eq. (1), following the DFT approach outlined in Section 2, the
equation is transformed into the frequency domain, viz.(

−ω2
jM + iωjC + K

)
Ft(u)j = Ft(f)j , (17)

where Ft(u)j and Ft(f)j are the Fourier transform of the nodal displacement uk and equivalent
load fk, respectively.

To include compatibility requirements and essential boundary conditions in the governing equa-
tion, and to ensure that the final solution has zero imaginary part, Eq. (17) is brought into the
following equivalent form, {

Keff,j CT

C 0

}{
Ft(u)j
Ft(λ)j

}
=

{
Ft(f)j

0

}
, (18)

where Keff,j is the effective stiffness matrix corresponding to the j -th frequency ωj , namely

Keff,j =

{
−ω2

jM + iωjC + K, 0 ≤ j < N/2;

conjugate of Keff,N−j , N/2 ≤ j < N,
(19)
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C is the constraint matrix that imposes compatibility requirements and essential boundary condi-
tions, and λk is the Lagrangian multiplier representing the internal forces and support reactions at
tk. By adopting the Rayleigh damping and the decomposition of K and M in Eq. (10), Keff,j can
be decomposed into

Keff,j = Aeff,jdiag (Λeffαeff)Beff, (20)

where Aeff,j is a deterministic matrix depending on the frequency ωj ,

Aeff,j =

{{
(1 + ibωk)A (−ω2

k + iaωk)Am
}
, 0 ≤ j < N/2;

conjugate of Aeff,N−j , N/2 ≤ j < N,
(21)

and Λeff, Beff, and αeff are time-invariant variables,

Λeff =

{
Λ 0
0 Λm

}
, Beff =

{
AT

ATm

}
, αeff =

{
α
αm

}
. (22)

Suppose the structure is subject to external loading, then

Ft(f)j = Ft(Fδdt)j = FδFt(dt)j . (23)

Then Eq. (18) is equivalent to the following decomposed form{
Keff,j0 CT

C 0

}{
Ft(u)j
Ft(λ)j

}
=

{
F
0

}
δFt(dt)j −

{
Aeff,j

0

}
diag

(
BeffFt(u)j

)
Λeff∆αeff, (24)

by using the decomposition in Eqs. (20) and (23) and the following identities

Aeff,jdiag (Λeffαeff)BeffFt(u)j = Aeff,j

(
Λeffαeff ◦BeffFt(u)j

)
(25)

= Aeff,jdiag
(
BeffFt(u)j

)
Λeffαeff,

where ∆αeff is the difference between αeff and the reference vector αeff0, viz. ∆αeff = αeff − αeff0,
and Keff,j0 = Aeff,jdiag(Λeffαeff0)Beff.

When the structure is subject to ground motion, according to Eq. (14),

Ft(f)j = Af (Λmαm ◦Bfδ)Ft(dt)j
=
(
Af (Λmαm0 ◦Bfδ) +Af (Λm∆αm ◦Bfδ)

)
Ft(dt)j (26)

= F0δFt(dt)j +Afdiag
(
BfδFt(dt)j

)
Λm∆αm,

where ∆αm is the difference between αm and the reference vector αm0, viz. ∆αm = αm − αm0,
and F0 = Afdiag(Λmαm0)Bf . Then the generalized equivalent load in Eq. (18) is decomposed into{

Ft(f)j
0

}
=

{
F0

0

}
δFt(dt)j +

{
Af
0

}
diag

(
BfδFt(dt)j

)
Λm∆αm, (27)
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Eq. (18) is equivalent to the following decomposed form{
Keff,j0 CT

C 0

}{
Ft(u)j
Ft(λ)j

}
=

{
F0

0

}
δFt(dt)j (28)

−
{
Aeff Af
0 0

}
diag

({
BeffFt(u)j
−BfδFt(dt)j

}){
Λeff

0 Λm

}
∆αeff.

Due to the similarities between the decomposition of the equivalent load in Eqs. (14) and (16), the
above formulation can be extended to cases when the initial conditions are non-trivial.

3.3. Iterative enclosure method

To solve the interval linear system Eqs. (24) and (28), they are recast into the following form

Kg,jFt(ug)j = FgδFt(dt)j −Ag,jdiag
(
Ft(vg)j

)
Λg∆αeff, (29)

where Kg,j , Fg, Ag,j , Λg are given deterministic matrices, ug is the unknown interval vector, δ,
dt, and ∆αeff are given interval vectors, and vg linearly depend on ug, viz. vg = v0 +Bgug. Here
subscripts j denotes variables associated with the j -th frequency ωj . Note that matrices Kg,j and
Ag,j are functions of the frequency ωj . In the most general case, ug includes u and λ, and the
auxiliary variable vg includes Beffu, −Bfδdt, and ATs u.

Now introduce Gj = K−1
g,j . Multiplying both sides of Eq. (29) by Gj yields

Ft(ug)j = (GjFg)δFt(dt)j − (GjAg,j)diag
(
Ft(vg)j

)
Λg∆αeff. (30)

Then ug is obtained by applying the IDFT to both side of (30),

ug,k =
(
F−1
t (GjFg) ∗ dt

)
k
δ −

(
F−1
t (GjAg,j) ∗ diag(vg)

)
k
Λg∆αeff, (31)

where (a∗b)k denotes the convolution between two discrete signals ak and bk. Eq. (31) can be recast
into the following summation form,

ug,k =

(
N−1∑
l=0

F−1
t (GjFg)k−ldt,l

)
δ −

(
N−1∑
l=0

F−1
t (GjAg,j)k−ldiag(vg,l)

)
Λg∆αeff. (32)

Then a fixed-point form for vg,k is obtained as

vg,k = v0,k +Bg

(
F−1
t (GjFg) ∗ dt

)
k
δ −Bg

(
F−1
t (GjAg,j) ∗ diag(vg)

)
k
Λg∆αeff. (33)

A guaranteed outer enclosure for vg,k is obtained by iteratively using Eq. (33), starting from the

trivial initial guess v1
g,k = v0,k +

(
F−1
t (GjFg) ∗ dt

)
k
δ. The iteration stops when no improvement in

vjg,k is observed for two consecutive iterations, and the converged solution is denoted as vng,k. Then

the outer solution uoutg,k is obtained by substituting vg,k in Eq. (31) with the converged solution vng,k.
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The convolution between a deterministic signal and an interval signal is computed multiple times,
as shown in Eqs. (31) and (33). To increase the computational efficiency and reduce overestimation
in the final solution, the FFT-based fast interval convolution algorithm, proposed by Liu and
Kreinovich (2010), is adopted. During the iteration in Eq. (33), only the radius of vg is updated.
All other vectors and matrices do not change after the first iteration.

4. Numerical Examples

The current IFEM algorithm is implemented using the interval MATLAB toolbox INTLAB (Rump,
1999). Interval enclosures of the structural responses of the following sample problems are calcu-
lated: i) a four-story rigid frame and ii) a simply supported truss. The performance of the current
method is compared against other available methods in the literature: i) the endpoint combination
method (EC) and ii) the Monte Carlo (MC) simulation. The results shows that the current method
is applicable to the transient analysis of structural dynamic problems with uncertain parameters.
Guaranteed interval enclosures of the exact structural responses in the time domain are obtained
with small overestimations. In addition, the computational time is negligible when compared with
other competing methods.

4.1. Four-story rigid frame

The first example is a four-story frame shown in Figure 1. The floors of the frame are assumed to be
rigid enough to model the structure as an equivalent spring-mass system (shown in the right-hand
side of Figure 1). The mass mj and the inter-story shear stiffness kj of each floor (j = 1, . . . , 4) are
modeled by independent interval variables, and given in Table I.
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Figure 1. A four-story rigid frame and the equivalent spring-mass system.
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Consider the structural response of the frame under a concentrated impact force acting on the
top floor. The force has a duration of 4 s, and its variation during that time is deterministic, viz.

f(t) =

{
P sin(πt/2), 0 ≤ t ≤ 4 s;
0, t > 4 s,

(34)

where P = [0.99, 1.01] kN (2% uncertainty in the magnitude of the load). The damping matrix
C = 0.5M + 5× 10−3K. The sampling rate is 100 Hz, so the sampling interval ∆t = 0.01 s.

Figure 2 compares the lower and upper bounds of u4 for the first 10 s, obtained from the current
method (IS, solid lines), Monte Carlo predictions (MC, dashed lines) from an ensemble of 10,000
simulations, the reference solution obtained from endpoint combination (EC, dash-dotted lines),
and the deterministic solution (DS, dotted line). Note that IS always contains the reference solution
EC, and MC is always contained by EC. In addition, the overestimation level of the current method

Table I. Interval mass and stiffness for the five-story rigid frame of Figure 1,
including 1% uncertainties in mass, and 5% uncertainties in stiffness.

Floor Mass (kg) Stiffness (kN/m)

mj mid mj rad mj kj mid kj rad kj

1 [5.416, 5.470] 5.443 0.027 [1.180, 1.240] 1.210 0.030

2 [5.416, 5.470] 5.443 0.027 [1.677, 1.763] 1.720 0.043

3 [5.416, 5.470] 5.443 0.027 [1.862, 1.958] 1.910 0.048

4 [5.416, 5.470] 5.443 0.027 [1.775, 1.865] 1.820 0.045
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Figure 2. Lower and upper bounds of the nodal displacement u4 for the four-story frame of Figure 1 under a sinusoidal
force: IS (solid lines) from the current method, EC (dashed lines), and MC (dash-dotted lines) from an ensemble
of 10,000 simulations. Material uncertainty is 1% for mass, and 5% for stiffness. Load uncertainty is 2% for the
magnitude.
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slightly increases as the time increases. The MC solution is obtained using the DFT approach, which
indistinguishable from the solution obtained from a recursive Newmark-β method.

Then the concentrated force f(t) is removed, and the structure is subject to non-trivial initial
conditions. Figure 3 shows the nodal displacement u4 at the top floor for the first 10 s with non-
trivial initial nodal displacement u0 (top) and nodal velocity v0 (bottom), respectively. Here 2%
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Figure 3. Lower and upper bounds of the nodal displacement u4 for the four-story frame of Figure 1 under non-trivial
initial conditions: (top) non-trivial initial displacement u0, (bottom) non-trivial initial velocity v0. IS (black solid
lines) from the current method, EC (blue dashed lines), and MC (red dash-dotted lines) from an ensemble of 10,000
simulations. Material uncertainty is 1% for mass, and 5% for stiffness. Uncertainty in the initial condition is 2% (see
online version for colors).
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uncertainty is considered for u0 and v0, viz.

u0 =
{

0 0 0 0 [0.99, 1.01]
}T × 10−3 m; (35)

v0 =
{

0 0 0 0 [0.99, 1.01]
}T × 10−2 m/s.

Figure 3 shows that the high frequency components dissipate quickly. After about 3 s, the
response of the structure is dominated by the lowest frequency vibration. Observe that the perfor-
mance of the current method is the same as in the previous case. The obtained interval solution
guarantees to enclose the reference solution (endpoint combination, EC), and the overestima-
tion level increases slightly as the time increases. Thus non-trivial initial conditions are handled
successfully.

4.2. Simply supported truss

The second example is a simply supported symmetric truss composed of 15 bars, as shown in
Figure 4. The joints are labeled from 1 to 8, and the bars are labeled from 1 to 15. Time-varying
concentrated load P acts at joint 5. Bars 1 to 3, 13 to 15 have the same cross section area A = 1.0×
10−3 m2, and all other bars, viz. bars 4 to 12, have smaller cross section area A = 6.0×10−4 m2. All
the bars are made of steel. They have the interval mass density ρ with midpoint value ρ = 7.8×103

kg/m3, and the interval Young’s modulus E with midpoint value E = 200 GPa.
Fifteen bar elements are used to model the truss in Figure 4. Element mass density ρ and

Young’s modulus E are assumed independent, and they are modeled by 30 interval variables. The
midpoint of the load P is a sinusoid with a frequency of 50 Hz and an amplitude of 200 kN, viz.

P = 200 sin(100πt) kN. (36)

The damping matrix C = 20M + 3× 10−5K. The sampling rate is 10 kHz, so ∆t = 1× 10−4 s.
Then vertical displacement v5 at joint 5 is selected for comparison among the various methods

mentioned previously. Consider 1% uncertainty for the magnitude and time-history of the load,
as well as Young’s modulus and mass density of each bar. Figure 5 plots the lower and upper
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Figure 4. A simply supported symmetric truss subject to concentrated force.
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bounds of v5 for the first 0.1 s obtained from the current method (IS, solid lines) and the Monte
Carlo predictions (MC, dashed lines from the Newmark-β approach, and dash-dotted lines from the
DFT approach) from an ensemble of 100,000 simulations. Observe that the current method obtains
guaranteed enclosures of the MC prediction.

Figure 5 shows that the uncertainties in the structural responses increase significantly over time.
This behavior is due to the fact that the load history uncertainties are modeled by independently
varied intervals at different time steps. In the current example, this means 0.1 s × 10 kHz = 1,000
independent interval variables. As a result, the overall uncertainty level is much higher than 1%. This
also explains the growing differences between IS and MC predictions over time. Figure 6 considers
(top) 2% uncertainties in load time-history and (bottom) 2% uncertainties in load magnitude,
Young’s modulus, and mass density. Observe that in the bottom subplot, the uncertainties now do
not increase over time, and the difference between IS and MC is much smaller than to top subplot.
So it is indeed the increased number of interval variables that caused the increased uncertainty and
the difference between IS and MC.

5. Conclusion

An interval finite element formulation is presented for the time-domain dynamic analysis of elastic
structures with uncertain geometric and material properties. By using the Discrete Fourier Trans-
form (DFT) and the Inverse Discrete Fourier Transform (IDFT), the given equivalent load and the
final obtained structural responses are both given in the time domain, but the matrix inversion
process is performed in the frequency domain. Ground motion and non-trivial initial conditions

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

−20

−10

0

10

20

Elapsed time t, s

N
od

al
 D

is
pl

ac
em

en
t  

u 4, ×
 1

0−
3 m

 

 
Interval Solution (IS)
MC, Newmark−β
MC, DFT Approach

Figure 5. Lower and upper bounds of the nodal displacement v5 at joint 5 for the four-story frame of Figure 4 under
external loads: IS (black solid lines) from the current method and MC predictions (blue dashed lines and red dotted
lines) from an ensemble of 100,000 simulations. Parameter uncertainties are 1% for load magnitude, load history,
Young’s modulus, and mass density (see online version for colors).
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are successfully handled via the introduction of the corresponding equivalent nodal forces. The
resulting method is both efficient and widely applicable.

Uncertain parameters of the structure are modeled as intervals. The obtained interval enclosures
guarantee to enclose the exact solution set with small overestimation, even for large uncertainty
levels. Numerical examples show that the presented method gives guaranteed sharp bounds on
the dynamic responses of the structure, even in cases when a large number of interval variables are
present and other available methods give over-optimistic prediction on the lower and upper bounds.
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Figure 6. Lower and upper bounds of the nodal displacement v5 at joint 5 for the four-story frame of Figure 4 with:
(top) 2% uncertainty only in load history; (bottom) 2% uncertainties in load magnitude, Young’s modulus, and mass
density. IS (black solid lines) from the current method and MC predictions (blue dashed lines and red dotted lines)
from an ensemble of 100,000 simulations (see online version for colors).
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